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NATURAL STRESS TENSORS

UDC 539.0S. N. Korobeinikov

The notion of natural stress tensors is introduced, which are tensors obtained from Cauchy and
Kirchhoff stress tensors by operations of mapping, half-mapping, and mixed mapping of the actual
configuration onto the reference one, and also onto two intermediate configurations. A complete class
of natural stress tensors is obtained and analyzed.

Introduction. The operation of tensor mapping [1] (bringing one tensor in conformity to another [2]) from
one configuration onto another is used in mechanics of continuous media. For second-rank tensors, this operation
is as follows. At a certain material point, the tensor is defined by component decompositions into basis dyads in a
chosen configuration. The mapped tensor is obtained by replacing these dyads by basis dyads at the same material
point from another configuration. Since the tensor components remain unchanged, a set of different (mapped)
tensors is obtained. By analogy, we introduce an operation of half-mapping, where only one basis vector rather
than the whole basis dyad from the other configuration is replaced. We also introduce an operation of half-mapping,
where one basis vector is replaced in the dyad by the corresponding vector from one chosen configuration, and the
other vector is replaced by a vector from another configuration.

We consider the following configurations [3]: reference configuration, actual (current or deformed) config-
uration, current back-rotated configuration, and rotated reference configuration. Mechanics of continuous media
employ the Cauchy stress tensor (true stress tensor) s [2, 3]. Sometimes, it is more convenient to use the Kirchhoff
stress tensor τ [3] (weight stress tensor [2]), which differs from the true stress tensor by a scalar factor J . We intro-
duce the notion of natural stress tensors, which are tensors that can be obtained from the Cauchy and Kirchhoff
stress tensors by operations of mapping, half-mapping, and mixed mapping of the image from the actual configura-
tion onto the reference configuration, current back-rotated configuration, and rotated reference configuration. The
essence of the term “natural” is as follows. The Cauchy and Kirchhoff stress tensors characterize the elementary
force related to elementary areas in actual and reference configurations, respectively. For tensors obtained by oper-
ations of mapping of the Cauchy and Kirchhoff stress tensors, there exist basis dyads, where the components of the
mapped vectors are equal to the components of tensors generating them with their mechanical meaning preserved.
In a certain sense, all natural tensors are “equivalent” to the Cauchy or Kirchhoff stress tensors.

The objective of the present work is to determine the complete class of natural stress tensors and to identify,
where possible, the tensors obtained with the known tensors.

Kinematics of Deformation. We consider the motion of a body B in the Euclidian three-dimensional
space, where a Cartesian coordinate system with orthonormal basis vectors ki is introduced (hereinafter, the
subscripts i and j run over the values of 1, 2, and 3). For generality, we consider a curvilinear coordinate system Θi,
which is the reference system, in addition to the Cartesian coordinate system. Let P be a certain material point
of the body B. Following [4], we call the material point with its infinitesimal vicinity the material particle. Let X
and x be the radius-vectors of the point P in the reference and current configurations, respectively. We assume
that the transformation of the reference configuration into the actual one is described by the law of motion: by a
continuous vector function with

x = x(X, t) : x(X, t0) = X
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under the condition

0 < J ≡ detF <∞ ∀ t > t0,

where t is a monotonically increasing deformation parameter (time), t0 is the value of the parameter t corresponding
to the reference configuration, and F is the deformation-gradient tensor

F ≡ ∂x

∂X
=

∂xi
∂Xj

ki ⊗ kj (X = Xiki, x = xiki).

Hereinafter, the sign “⊗” denotes the dyad product of the basis vectors; summation is performed over repeated
indices. Polar decomposition of this tensor leads the equalities (detF > 0)

F = R · U = V ·R (U t = U, V t = V, R ·Rt = g, detR = 1), (1)

where g is the metric (unit) tensor, U and V are the symmetric, positively defined (all principal values are positive)
right and left stretch tensors), and R is the proper orthogonal rotation tensor; the dot indicates the scalar (internal)
product of tensors, and the superscript “t” implies the operation of tensor transposition. From Eq. (1), we obtain
U = Rt · V · R and V = R · U · Rt, i.e., the tensor U may be obtained from the tensor V by the operation of back
rotation; vice versa, the tensor V can be obtained from the tensor U by the operation of rotation.

In transformation of coordinates corresponding to the rigid motion of the body, we have

x∗(X, t) ≡ Q(t) · x(X, t) + c(t), (2)

where Q(t) is the proper orthogonal tensor (Q · Qt = g and detQ = 1) and c(t) is a vector; the tensors U and V

are transformed as follows:

U∗ = U, V ∗ = Q · V ·Qt. (3)

We call the tensors that satisfy, in transformation (2), the first and second relations in (3) invariant and indifferent
tensors, respectively. Invariant and indifferent tensors form the class of objective tensors [3]. Note that the tensor U
is invariant and the tensor V is indifferent, i.e., they are objective, whereas the tensors F and R are not objective.

We define the Lagrangian coordinate system Θ̂i as follows: we assume that Θ̂i = Θi in the reference
configuration for t = t0; at any other time t > t0, the Lagrangian coordinates of a fixed material point have the
same values of Θ̂i. We determine the material reference and current covariant basis vectors as

ěi(Θ̂k) ≡ ∂X

∂Θ̂i
=
∂Xj

∂Θ̂i
kj , êi(Θ̂k, t) ≡ ∂x

∂Θ̂i
=
∂xj

∂Θ̂i
kj : êi(Θ̂k, t0) = ěi(Θ̂k).

In accordance with the formulas of tensor analysis, we also introduce covariant basis vectors ěi and êi. The
covariant and contravariant basis vectors in the reference and current configurations are related by the following
transformation formulas [3]:

êi = F · ěi = ěi · F t, êi = F−t · ěi = ěi · F−1,

ěi = F−1 · êi = êi · F−t, ěi = F t · êi = êi · F.
(4)

Hereinafter F−t ≡ (F−1)t = (F t)−1.
We denote the reference and actual configurations introduced previously as B̌ and B̂, respectively, and

introduce two intermediate configurations [3].
1. The current back-rotated configuration B̄ is obtained from the configuration B̂ by the operation of back

rotation. The basis vectors of the material current basis (êi and êi) and the material current back-rotated basis ēi
and ēi are related via the transformation formulas

ēi ≡ Rt · êi = êi ·R, ēi ≡ Rt · êi = êi ·R,

êi = R · ēi = ēi ·Rt, êi = R · ēi = ēi ·Rt.
(5)

2. The rotated reference configuration B̃ is obtained from the configuration B̌ by the operation of rotation.
The basis vectors of the material reference basis ěi, ěi and the rotated material reference basis ẽi, ẽi are transformed
as follows:

ẽi ≡ R · ěi = ěi ·Rt, ẽi ≡ R · ěi = ěi ·Rt,

ěi = Rt · ẽi = ẽi ·R, ěi = Rt · ẽi = ẽi ·R.
(6)
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These configurations are determined only by local transformations for each material particle of the body. In the
general case, in contrast to the reference and actual configurations, they do not form real configurations of the
deformed body.

Equations (1) and (4)–(6) yield the following transformation formulas for the basis vectors [3]:

ěi = U−1 · ēi = ēi · U−1, ěi = U · ēi = ēi · U,

ēi = U · ěi = ěi · U, ēi = U−1 · ěi = ěi · U−1,

êi = V · ẽi = ẽi · V, êi = V −1 · ẽi = ẽi · V −1,

ẽi = V −1 · êi = êi · V −1, ẽi = V · êi = êi · V.

(7)

Class of Natural Stress Tensors. Let s be an indifferent symmetric Cauchy stress tensor (true stress
tensor) that characterizes the stress state of the material particle. We also introduce an indifferent symmetric
Kirchhoff stress tensor

τ ≡ Js. (8)

We consider the following representations of this tensor:

τ = τ̂ ij êi ⊗ êj = τ̂ij ê
i ⊗ êj = τ̂i

j êi ⊗ êj = τ̂ ij êi ⊗ êj .

Using the operations of mapping the tensor τ from the actual B̂ onto the reference configuration B̌, we
obtain four stress tensors:

S1 ≡ τ̂ ij ěi ⊗ ěj ⇔ S1 ≡ F−1 · τ · F−t,

S2 ≡ τ̂ij ěi ⊗ ěj ⇔ S2 ≡ F t · τ · F,

S3 ≡ τ̂ij ěi ⊗ ěj ⇔ S3 ≡ F t · τ · F−t,

S4 ≡ τ̂ ij ěi ⊗ ěj ⇔ S4 ≡ F−1 · τ · F.

(9)

Using the operations of mixed mapping of the tensor τ from the actual configuration B̂ onto the configura-
tions B̌ and B̄, we obtain four more stress tensors:

S5 ≡ τ̂ ij ēi ⊗ ěj = τ̂i
j ēi ⊗ ěj ⇔ S5 ≡ Rt · τ · F−t,

S6 ≡ τ̂ ij ěi ⊗ ēj = τ̂ ij ěi ⊗ ēj ⇔ S6 ≡ F−1 · τ ·R,

S7 ≡ τ̂ij ěi ⊗ ēj = τ̂i
j ěi ⊗ ēj ⇔ S7 ≡ F t · τ ·R,

S8 ≡ τ̂ij ēi ⊗ ěj = τ̂ ij ēi ⊗ ěj ⇔ S8 ≡ Rt · τ · F.

(10)

We map the tensor τ from the configuration B̂ onto the configuration B̄:

τ̄ ≡ τ̂ ij ēi ⊗ ēj = τ̂ij ē
i ⊗ ēj = τ̂i

j ēi ⊗ ēj = τ̂ ij ēi ⊗ ēj ⇔ τ̄ ≡ Rt · τ ·R (τ = R · τ̄ ·Rt). (11)

It follows from (7) that the tensors in (9) may be considered as stress tensors obtained by operations of
mapping the tensor τ̄ from the configuration B̄ onto the configuration B̌:

S1 = U−1 · τ̄ · U−1, S2 = U · τ̄ · U, S3 = U · τ̄ · U−1, S4 = U−1 · τ̄ · U. (12)

By analogy, the tensors determined in (10) may be considered as stress tensors obtained by operations of
half-mapping of the tensor τ̄ from the configuration B̄ onto the configuration B̌:

S5 = τ̄ · U−1, S6 = U−1 · τ̄ , S7 = U · τ̄ , S8 = τ̄ · U. (13)

It follows from (11) that the tensor τ̄ is invariant. As is noted above, the tensor U is also invariant. Therefore, it
follows from (12) and (13) that the tensors Sk (hereinafter the subscript k runs the values from 1 to 8) are invariant.
The tensors τ̄ and Sk form the complete set of invariant stress tensors that can be obtained from the Kirchhoff stress
tensor τ by operations of mapping (including mixed mapping) from the configuration B̂ onto the configurations B̌
and B̄. At the same time, these tensors are basis tensors in the family of invariant stress tensors obtained in [5] on
the basis of four principles: objectivity, isotropy, conformity, and regularity. These stress tensors have the following
names [5]: S1 is the second Piola–Kirchhoff tensor (S1 = St

1), S2 is the Green–Rivlin tensor (S2 = St
2), S3 and S4

are the first and second Atluri tensors (S3 = St
4), S5 and S6 are the first and second Biot tensors (S5 = St

6), S7 and
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S8 are the first and second Hill tensors (S7 = St
8); τ̄ is the Noll tensor or the back-rotated Kirchhoff stress tensor

(τ̄ = τ̄ t).
We obtain four stress tensors by operations of mapping of the tensor τ from the configuration B̂ onto the

configuration B̃:

s1 ≡ τ̂ ij ẽi ⊗ ẽj ⇔ s1 ≡ V −1 · τ · V −1,

s2 ≡ τ̂ij ẽi ⊗ ẽj ⇔ s2 ≡ V · τ · V,

s3 ≡ τ̂ij ẽi ⊗ ẽj ⇔ s3 ≡ V · τ · V −1,

s4 ≡ τ̂ ij ẽi ⊗ ẽj ⇔ s4 ≡ V −1 · τ · V.

Using operations of half-mapping of the tensor τ from the configuration B̂ onto the configuration B̃, we
obtain four more stress tensors:

s5 ≡ τ̂ ij êi ⊗ ẽj = τ̂i
j êi ⊗ ẽj ⇔ s5 ≡ τ · V −1,

s6 ≡ τ̂ ij ẽi ⊗ êj = τ̂ ij ẽi ⊗ êj ⇔ s6 ≡ V −1 · τ,

s7 ≡ τ̂ij ẽi ⊗ êj = τ̂i
j ẽi ⊗ êj ⇔ s7 ≡ V · τ,

s8 ≡ τ̂ij êi ⊗ ẽj = τ̂ ij êi ⊗ ẽj ⇔ s8 ≡ τ · V.
The tensors sk form the complete set of indifferent stress tensors that can be obtained from the tensor τ by

operations of mapping and half-mapping from the configuration B̂ onto the configuration B̃. Following [5], these
tensors, including τ , may be called the basis tensors in the family of indifferent stress tensors obtained on the basis
of the four principles mentioned above (the objectivity here is understood as indifference instead of invariance).

The tensors sk and Sk are related via transformations of rotation and back rotation, as τ and τ̄ [see (11)]:
Sk = Rt · sk · R and sk = R · Sk · Rt. Therefore, the tensors sk may be called the rotated stress tensors Sk. The
following equalities are valid: s1 = st

1, s2 = st
2, s3 = st

4, s5 = st
6, and s7 = st

8. The tensors s5 and s6 may be also
called the first and second Bell stress tensors, since the tensor s6 seems to be introduced for the first time in [6]
(in [6], the tensor s6 is erroneously considered as symmetric).

Using the operations of half-mapping of the tensor τ from the actual B̂ onto the reference configuration B̌,
we obtain four stress tensors:

P1 ≡ τ̂ ij êi ⊗ ěj = τ̂i
j êi ⊗ ěj ⇔ P1 ≡ τ · F−t = R · S5 = s5 ·R,

P2 ≡ τ̂ ij ěi ⊗ êj = τ̂ ij ěi ⊗ êj ⇔ P2 ≡ F−1 · τ = S5 ·Rt = Rt · s5,

P3 ≡ τ̂ij ěi ⊗ êj = τ̂i
j ěi ⊗ êj ⇔ P3 ≡ F t · τ = S8 ·Rt = Rt · s8,

P4 ≡ τ̂ij êi ⊗ ěj = τ̂ ij êi ⊗ ěj ⇔ P4 ≡ τ · F = R · S8 = s8 ·R.
Note that P1 = P t

2 and P3 = P t
4 . The tensor P1 is called the first Piola–Kirchhoff stress tensor (sometimes, the

first Piola–Kirchhoff stress tensor is called the tensor P2 transposed to it). The tensors Pl (the subscript l runs the
values from 1 to 4) are non-objective (neither invariant nor indifferent).

Using the operations of half-mapping of the tensor τ from the actual configuration B̂ onto the current
back-rotated configuration B̄, we obtain two more stress tensors

T1 ≡ τ̂ ij êi ⊗ ēj = τ̂ij ê
i ⊗ ēj = τ̂i

j êi ⊗ ēj = τ̂ ij êi ⊗ ēj ⇔ T1 ≡ τ ·R = R · τ̄ ,

T2 ≡ τ̂ ij ēi ⊗ êj = τ̂ij ē
i ⊗ êj = τ̂i

j ēi ⊗ êj = τ̂ ij ēi ⊗ êj ⇔ T2 ≡ Rt · τ = τ̄ ·Rt,

for which the equality T1 = T t
2 is valid. These stress tensors are non-objective.

The stress tensors τ̄ , Sk, sk, Pl, and Tm (the subscript m takes the values 1 and 2) form the complete set
of stress tensors obtained from the tensor τ by operations of mapping, half-mapping, and mixed mapping from the
actual configuration B̂ onto the configurations B̌, B̄, and B̃. These tensors, including τ , are called the τ -family of
natural stress tensors.

Using Eq. (8), we obtain the s-family of natural stress tensors: s, s̄, J−1Sk, J−1sk, J−1Pl, and J−1Tm. The
back-rotated Cauchy stress tensor s̄ ≡ Rt · s ·R = J−1τ̄ [7] is introduced here. The tensor J−1S1 is also called the
energetic stress tensor [8]. The families τ and s compose the class of natural stress tensors.

Analysis of Natural Stress Tensors. All the stress tensors introduced have the mechanical meaning of
stresses due to the equality of their components to the components of the Kirchhoff τ or Cauchy s stress tensors in
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specially chosen basis dyads. It is reasonable to use the objective (invariant or indifferent) stress and strain tensors
in constitutive laws. We represent the tensors τ and s in the spectral form

τ = τimi ⊗mi, s = simi ⊗mi (τi = Jsi), (14)

where τi and si are the principal values of the tensors τ and s, respectively, and mi are the unit vectors of the
mutually orthogonal principal axes. The stress state in the material particle is characterized both by the absolute
value and by the signs of the principal values of τi or si. It is desirable to retain the same signs of the principal
values of the tensors as those of the tensors τ or s, since the positive principal values of τi or si (J > 0) correspond
to extension of the material along the corresponding principal axis and the negative values to its compression.

We analyze the invariant stress tensors τ̄ , Sk, s̄, and J−1Sk. It follows from (12) and (13) that the Noll stress
tensor τ̄ hinges the invariant natural stress tensors of the τ -family. By analogy, the back-rotated Cauchy stress
tensor s̄ hinges the invariant natural stress tensors of the s-family. From Eqs. (11) and (14), we obtain the following
spectral representations of the tensors τ̄ and s̄: τ̄ = τiM i ⊗M i, s̄ = siM i ⊗M i, and M i ≡ Rt ·mi = mi ·R. It
follows from here that the tensors τ̄ and s̄ reproduce exactly the stress state of the material particle in back-rotated
principal axes with the orthogonal unit basis vectors M i.

In an arbitrary coordinate system, the components of the second-rank tensors are represented as quadratic
matrices of order 3 × 3. Equalities (12) and (13) may be treated as matrix transformations of the components of
the tensor τ̄ into the components of the tensors Sk. Following [5], we use the terminology of matrix transformations
of linear algebra for the tensor transformations of Eq. (12) and (13). Tensor transformations in (12) and (13) are
equivalence transformations (equivalence transformations retain the rank of matrices). In this sense, all tensors Sk
are equivalent to the tensor τ̄ . The first two equalities in (12) are congruence transformations (congruence trans-
formations retain both the principal directions and the signs of the principal values). Following [5], we call S1

and S2 the tensors congruent to the tensor τ̄ . The second two equalities in (12) are transformations of similarity
(transformations of similarity retain the principal values but, in the general case, do not retain orthogonality of the
principal directions of the generating symmetric matrix). Following [5], we call the asymmetric tensors S3 and S4

similar to the tensor τ̄ . Transformations (13) for matrices are semi-identical. [A semi-identical transformation
corresponds to one unit matrix of two (left or right) matrices that border on the generating matrix. In the general
case, these transformations retain neither the principal values nor the orthogonality of the principal directions of
the generating matrix.] Thus, the asymmetric tensors Sn (n = 5, 8) are semi-identical to the tensor τ̄ [5].

Finally, we note that only two congruent stress tensors (S1 and S2) reproduce most exactly the stress state in
the material particle among all tensors Sk. They retain both the principal directions and the signs of the principal
values of the tensor τ̄ . Despite the fact that the tensors Sn (n = 3, 8) are invariant and equivalent to the tensor τ̄ , it
is inexpedient to use them in constitutive laws. First, they may distort the mechanical meaning of the stress state
of the material particle; second, they are asymmetric in the general case. We consider the symmetric components of
these tensors S̃3 ≡ (S3 +S4)/2, S̃5 ≡ (S5 +S6)/2, and S̃7 ≡ (S7 +S8)/2. We call the tensor S̃3 the symmetric Atluri
stress tensor and the tensors S̃5 and S̃7 the Jaumann [5] (symmetric Biot) tensor and the Chernykh [4] (symmetric
Hill) tensors. Such symmetric tensors have no mechanical meaning of stresses [5]. In the general case, they are not
equivalent to the stress tensor τ̄ . Note that these stress tensors do not belong to the class of natural stress tensors.

It follows from a similar analysis of indifferent stress tensors that the symmetric stress tensors s1 and s2 are
congruent, the asymmetric tensors s3 and s4 are similar, and the tensors sn (n = 5, 8) are semi-identical to the
Kirchhoff stress tensor τ .

It is inexpedient to use the asymmetric stress tensors Pl and Tm to formulate constitutive laws, but the
tensors P1 or P2 may be used for compact formulation of equations of motion in the reference configuration [3, 8].

The expediency of using the natural stress tensors of the τ -family was considered above. Invariant and
indifferent tensors of the s-family have the same properties, but non-objective tensors of this family are not used.

Note that all the natural stress tensors are equivalent to the Cauchy stress tensor s or the Kirchhoff stress
tensor τ .

Conclusions. By means of operations of mapping, half-mapping, and mixed mapping of the Cauchy s and
Kirchhoff τ stress tensors from the actual configuration onto the reference and two intermediate configurations, we
obtained some previously known stress tensors and also some new ones, which were called the natural stress tensors.
They are divided into two families (τ and s) named by the generating tensors. Each family has four subfamilies.
For example, the τ -family has the following subfamilies of stress tensors: invariant τ̄ and Sk, indifferent τ and sk,
non-objective Pl, and non-objective Tm.
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The analysis of tensors, which was performed following the technique of [5], showed that the invariant
tensors τ̄ , S1, and S2 and the indifferent tensors τ , s1, and s2 are optimal for formulation of constitutive laws. In
this case, the tensors S1 and S2 are congruent to the tensor τ̄ , and s1 and s2 are congruent to the tensor τ . In the
s-family, the invariant stress tensors J−1S1 and J−1S2 and the indifferent tensors J−1s1 and J−1s2 are congruent
to the tensors s̄ and s, respectively. The expediency of using non-objective stress tensors P1 and P2 in formulation
of equations of motion is noted.
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